Abstract

Lichens are symbiotic associations of fungi with microalgae and/or cyanobacteria, which are considered among the slowest growing organisms, with strong tolerance to adverse environmental conditions. There are about 400 genera and 1600 species of lichens and those belonging to the Usnea genus comprise about 360 of these species. Usnea lichens have been used since ancient times as dyes, cosmetics, preservatives, deodorants and folk medicines. The phytochemistry of the Usnea genus includes more than 60 compounds which belong to the following classes: depsides, depsidones, depsones, lactones, quinones, phenolics, polysaccharides, fatty acids and dibenzofurans. Due to scarce knowledge of metabolomic profiles of Usnea species (U. barbata, U. antarctica, U. rubicunda and U. subfloridana), a study based on UHPLC-ESI-OT-MS-MS was performed for a comprehensive characterization of their secondary metabolites. From the methanolic extracts of these species a total of 73 metabolites were identified for the first time using this hyphenated technique, including 34 compounds in U. barbata, 21 in U. antarctica, 38 in U. rubicunda and 37 in U. subfloridana. Besides, a total of 13 metabolites were not identified and reported so far, and could be new according to our data analysis. This study showed that this hyphenated technique is rapid, effective and accurate for phytochemical identification of lichen metabolites and the data collected could be useful for chemotaxonomic studies.

Highlights

  • Lichens are symbiotic associations of fungi with microalgae and/or cyanobacteria

  • Continuing our research on lichens, we have analyzed the phytochemical profile of four Usnea species for the first time based on UHPLC-DAD coupled with high resolution electrospray ionization tandem mass spectrometry (ESI-MS-MS)

  • Four Usnea species were studied in order to determine their metabolomics profiles and chemical fingerprints: U. barbata from Longavi, Chile; U. antarctica from Antarctica, U. rubicunda and

Read more

Summary

Introduction

Lichens are symbiotic associations of fungi with microalgae and/or cyanobacteria. Lichens are among the slowest growing organisms with strong tolerance to adverse environmental conditions ranging from plains to the highest mountains of tropical to Arctic regions under xeric to aquatic conditions. The hyphenated Q-exactive focus instrument is a high-resolution accurate mass (HRAM) instrument which combines UHPLC-DAD with an OrbitrapTM, a quadrupole (Q) and a high-resolution collision cell (HCD), which allows high resolution MS fragments [5,6,7]. This hyphenated technique is a strong weapon in the field of chemical lichenology and some lichens, namely: Ramalina siliquosa, Parmotrema grayana, Heterodermia obscurata, Ramalina terebrata, Everniopsis trulla have been studied under this technique [6,7,9,10]. Continuing our research on lichens, we have analyzed the phytochemical profile of four Usnea species for the first time based on UHPLC-DAD coupled with high resolution electrospray ionization tandem mass spectrometry (ESI-MS-MS)

Metabolomics in Usnea antarctica
Metabolomics in Usnea rubicunda
Metabolomics in Usnea subfloridana
UHPLC-MS
C19 H16 O8 Cl
Lichen Material
Materials and Methods
Sample Preparation
Instruments
LC Parameters
MS Parameters
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call