Abstract

This study aimed to evaluate the antibacterial activity of the dichloromethane/ethyl acetate fraction (named F4a), obtained from the culture of Pseudomonas aeruginosa LV strain in presence of copper chloride, against planktonic and sessile cells of Staphylococcus aureus, including those presenting multidrug resistance. First, the minimal inhibitory concentrations (MIC) of F4a for twenty-six clinical isolates were determined and the values ranged from 1.56 to 6.25 µg/mL. Minimal bactericidal concentration (MBC) of 3.13 µg/mL was detected in 84.6% of the isolates. The time-kill curve analysis revealed a significant decreased in colony-forming unit counts after 4 h of treatment with the MIC/MBC of F4a. Moreover, the MIC/MBC of the fluopsin C, a copper-containing compound present in F4a, were 1.56/3.13 µg/mL, indicating that this compound seems to be one of the active components related to the antibacterial activity against S. aureus. Images of transmission electron microscopy showed significant ultrastructural alterations in planktonic cells treated with the MIC/MBC of F4a. A significant reduction in the metabolic activity of established biofilms of all S. aureus isolates was observed after treatment with F4a. No hemolytic activity to human erythrocytes was detected for F4a, and the cytotoxic concentration to LLC-MK2 cells was 3.44 µg/mL. In conclusion, F4a exhibited a bactericidal activity against planktonic cells and inhibited the metabolic activity of biofilms of S. aureus. F4a can be promising for the development of new strategies for the treatment of infections caused by S. aureus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call