Abstract

To understand the unique mechanical properties of high-entropy alloys, it is important to know the nature and strength of interatomic interactions between similar and dissimilar atoms. In this regard, the objective of this study is to use the phenomenon of secondary ion emission for Cr14.3Mn14.3Fe14.3Ni28.6Co14.3Cu14.3 alloy with fcc structure. The yield of secondary ions for all alloy components and corresponding pure metals is quantitatively compared for the first time and an equation is proposed to calculate the atomic bond energy based on the existing models of secondary ion emission mechanism. Compared to pure metals, the bond energy increases in the alloy for Cr and Fe atoms. The greatest decrease in the bond energy is observed for Mn atoms. Reduction in the bond energy for Co and Ni is insignificant. It is suggested that the atomic interaction energy is influenced by changes in the local electron density in fusion as compared with pure metals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.