Abstract
The like and unlike isomers of phosphoramidite (P*) ligands are found to react differently with iridium(I), which is a key to explaining the apparently inconsistent results obtained by us and other research groups in a variety of catalytic reactions. Thus, the unlike diastereoisomer (aR,S,S)-[IrCl(cod)(1 a)] (2 a; cod=1,5-cyclooctadiene, 1 a=(aR,S,S)-(1,1'-binaphthalene)-2,2'-diyl bis(1-phenylethyl)phosphoramidite) forms, upon chloride abstraction, the monosubstituted complex (aR,S,S)-[Ir(cod)(1,2-eta-1 a,kappaP)](+) (3 a), which contains a chelating P* ligand that features an eta(2) interaction between a dangling phenyl group and iridium. Under analogous conditions, the like analogue (aR,R,R)-1 a' gives the disubstituted species (aR,R,R)-[Ir(cod)(1 a',kappaP)(2)](+) (4 a') with monodentate P* ligands. The structure of 3 a was assessed by a combination of X-ray and NMR spectroscopic studies, which indicate that it is the configuration of the binaphthol moiety (and not that of the dangling benzyl N groups) that determines the configuration of the complex. The effect of the relative configuration of the P* ligand on its iridium(I) coordination chemistry is discussed in the context of our preliminary catalytic results and of apparently random results obtained by other groups in the iridium(I)-catalyzed asymmetric allylic alkylation of allylic acetates and in rhodium(I)-catalyzed asymmetric cycloaddition reactions. Further studies with the unlike ligand (aS,R,R)-(1,1'-binaphthalene)-2,2'-diyl bis{[1-(1-naphthalene-1-yl)ethyl]phosphoramidite} (1 b) showed a yet different coordination mode, that is, the eta(4)-arene-metal interaction in (aS,R,R)-[Ir(cod)(1,2,3,4-eta-1 b,kappaP)](+) (3 b).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.