Abstract

Control forces are required for steering a launch vehicle to guide it to follow an optimal trajectory. Launch vehicle control involves two control loops, the inner loop deals with short-period dynamics, stability and the outer loop, known as the guidance loop, optimises the trajectory. The general nonlinear plant model is first approximated as a linear time-varying plant over a nominal trajectory and then segmented as linear, time-invariant plant models at different time intervals. A major part of the plant model is the control power plant, which for a secondary injection thrust vector control system used for the solid booster stage of a launch vehicle is nonlinear due to various reasons. The controllers designed for different time regimes assume the control power plant as linear and are adapted smoothly by a technique called gain scheduling to cope with the plant model changes wrt time. In this paper, a fuzzy logic-based pre-compensator is developed to linearise the control power plant so that the controller design becomes valid. Simulation results are presented to validate the design and a novel preprocessing technique is developed to reduce the size of the fuzzy inference system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.