Abstract

ABSTRACTSecondary grain growth in thin Au films on SiO2 substrates with periodic surface relief structures was studied as a model for the application of graphoepitaxy (the growth of orientated crystalline films through the use of artificial surface patterning). Secondary grain growth driven by sur-face energy anisotropy produces grains many times larger than the film thickness with uniform texture. In thin films of Au on SiO2, surface-energy- driven secondary grain growth was found to occur at room temperature as soon as the film becomes continuous, and was shown to be responsible for the {111} deposition texture. A square-wave-profile grating of 0.2 μm period, etched into the surface of the substrate, resulted in preferred growth of {111}-textured grains with <112> directions oriented parallel to the grating axis. It is proposed that surface energy minimization is responsible for this phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.