Abstract

An important problem that arises in the design and the performance of axial flow turbines is the understanding, analysis, prediction and control of secondary flows. Sieverding has given a review of secondary flow literature, covering up to 1985. In this paper a brief review of pre-1985 work is given, and then a survey of open literature secondary flow investigations since the Sieverding review is presented. Most of the studies reviewed deal with plane or annular cascade flows. Tip clearance effects are not covered. The basic secondary flow picture for a turbine cascade, as measured and verified by a number of investigators is described. Recent work that shows refined secondary flow vortex structures is examined. A flow parameter based on inlet boundary layer properties used to predict horseshoe vortex swirl is presented. Work on secondary flow loss reduction, involving airfoil geometry, endwall fences and endwall contouring is briefly reviewed. A new leading edge bulb geometry that has demonstrated impressive loss reduction is considered. It is concluded that accurate routine prediction of secondary flow losses has not yet been achieved, and must await either a better turbulence model or more experiments to reveal new endwall loss production mechanisms. Lastly, loss is examined from the standpoint of entropy generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call