Abstract

The present paper simplifies the naturally formed dunes (riverbeds) as large-scale three-dimensional staggered wavy walls to investigate the features of the accompanying secondary flows and streamwise vortices via large-eddy simulation. A comparison between the swirling strength and the mean velocities suggests where a secondary flow induces upwash or downwash motions. Moreover, we propose a pseudo-convex wall mechanism to interpret the directionality of the secondary flow. The centrifugal instability criterion is then used to reveal the generation of the streamwise vortices. Based on these analytical results, we found that the streamwise vortices are generated in the separation and reattachment points on both characteristic longitudinal–vertical and horizontal cross-sections, which is related to the curvature effect of the turbulent shear layer. Furthermore, the maximum Görtler number characterized by the ratio of centrifugal to viscous effects suggests that, for fixed ratio of spanwise- to streamwise-wavelength cases, the strongest centrifugal instability occurring on the longitudinal–vertical cross-section gradually dominates with the increases in amplitude. A similar trend for the cases with varied spanwise wavelength can also be found. It is also found that the streamwise vortices are generated more readily via transverse flow around the crest near the separation and reattachment points when the ratio of spanwise- to streamwise-wavelength equals 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call