Abstract

Two fundamentally different types of dual-frequency (DF) capacitively coupled radio frequency discharges can be used for plasma processing applications to realize separate control of the ion mean energy, ⟨Ei⟩, and the ion flux, Γi, at the substrate surface: (i) classical discharges operated at substantially different frequencies, where the low- and high-frequency voltage amplitudes, ϕlf and ϕhf, are used to control ⟨Ei⟩ and Γi, respectively; (ii) electrically asymmetric (EA) discharges operated at a fundamental frequency and its second harmonic with fixed, but adjustable phase shift between the driving frequencies, θ. In EA discharges the voltage amplitudes are used to control Γi and θ is used to control ⟨Ei⟩. Here, we report our systematic simulation studies of the effect of secondary electrons on the ionization dynamics and the quality of this separate control in both discharge types in argon at different gas pressures. We focus on the effect of the control parameter for ⟨Ei⟩ on Γi for different secondary yields, γ. We find a dramatic effect of tuning ϕlf in classical DF discharges, which is caused by a transition from α- to γ-mode induced by changing ϕlf. In EA discharges we find that no such mode transition is induced by changing θ within the parameter range studied here and, consequently, Γi remains nearly constant as a function of θ. Thus, despite some limitations at high values of γ the quality of the separate control of ion energy and flux is generally better in EA discharges compared with classical DF discharges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.