Abstract

The secondary-electron signal levels of eight thiophenol-based self-assembled monolayers (SAMs) on gold (Au) are measured and compared against the signal level from bare gold between energies 1 and 2 keV. To enable accurate comparison, scanning electron micrographs of SAMs are taken with a Faraday cup and a reference sample. Most SAMs-on-gold produce a lower signal level than that from bare gold, with the exception of 3-methylthiophenol. Highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the thiophenol derivatives are calculated and compared against the signal levels. Signal levels from bis[3-(triethoxysilyl)propyl]tetrasulfide, (4-chlorophenyl)-triethoxysilane, and amino-propyl-triethoxy-silane on titanium (Ti) and aluminum (Al) are also measured. All three SAMs on aluminum have lower signal levels than bare Al but this effect is reversed for the case of Ti, where SAMs deposited on Ti result in a higher signal level. A hybrid Ti/Al fiducial grid is fabricated and the point-spread function at 2 keV in the underlying resist is investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call