Abstract

Thin polymeric films are evaluated in this research as a potential replacement technology for radiation portal monitors where specific attention is given to the physical basis for neutron-photon discrimination. It is shown that the difference in the energy deposition mechanics from charged particle reaction products and from the Compton scattered electrons allows for the effective discrimination between neutrons and gammas. One goal of this study was to establish optimal thickness for polymeric films that maximize the neutron interactions and simultaneously minimize the measured interaction of photons. Polymeric films ranging from $15~\mu\hbox{m}$ to $600~\mu\hbox{m}$ containing ${}^6{\rm LiF}$ were fabricated and tested for their capability to satisfy criteria established by the Department of Homeland Security. Results from Monte Carlo simulations with the GEANT4 code and data from measurements confirm the technical basis for our proposed understanding of neutron-photon discrimination characteristics for thin films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.