Abstract

Secondary electron imaging combined with immersion lens and through-the-lens detection has been used to analyze various semiconductor junctions. Dopant contrast imaging was applied for multi-doped 4H–SiC, growth-interrupted n+/p and n/n+ homoepitaxial interfaces, and an AlGaAs/GaAs p-n junction light-emitting diode structure. Dopant contrast was explained by the local variation in secondary electron escape energies resulting from the built-in potential difference. The effect of varying electron affinity on contrast for the heterostructures is also discussed. The contrast profile of the n-doped AlGaAs compared reasonably well to the simulated valence bandedge energy using a previously determined efficiency of dopant ionization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.