Abstract

Motivated by observational and experimental evidence, a theoretical model is proposed to relate the secondary dispersal of seagrass seeds with the complexity of microtopography in natural environments. Complexity is encoded in terms of the Hurst exponent of a fractal description of the microtopographical geometry. The percentage of a seafloor transect where secondary dispersal of seagrass seeds occurs, is quantified in terms of the mainstream velocity, bottom complexity and properties of the seeds. Theoretical expressions are validated considering the cases of Zostera marina and Posidonia oceanica seeds and using computational fluid dynamics (CFD). A total of 200 CFD simulations with different bottom complexities and flow conditions, were done for each seagrass genus to validate the theoretical model. Numerical results agree with theoretical predictions. This finding provides a management tool to assess the degree of seed retention in seed-based restoration areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.