Abstract

Secondary electron and positron fluxes generated in interstellar space and in the atmosphere from the decays of pions and kaons in inelastic nuclear interactions are calculated by Monte Carlo techniques for lepton energies in the range from 1 to 100 GeV and an assumed thickness of 10 g/sq cm or less for the interstellar or atmospheric material. A simple and accurate analytical model which summarizes the Monte Carlo results and identifies the essential parameters involved is developed and used to interpret a previous positron measurement. It is found that the thickness of interstellar and source material is about 4.3 g/sq cm for cosmic-ray positrons with energies exceeding 4 GeV, a result that is difficult to reconcile with recently proposed two-containment-volume propagation models which predict a thickness of 1.8 g/sq cm for the same energies on the basis of the energy dependence of the measured (Li+Be+B)/(C+O) ratio. It is shown that single-containment-volume (galactic) models invoking an energy-dependent leakage lifetime are compatible with the positron data, but lack a mechanism to explain the energy dependence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.