Abstract

This paper focuses on the islanded operation of microgrids. In this mode of operation, the microsources are required to cooperate autonomously to regulate the local grid voltage and frequency. Droop control is typically used to achieve this autonomous voltage and frequency regulation. However, droop control has real and reactive power sharing limitations between the microsource inverters when there are mismatches between the output filter components and power line impedances. In this paper, secondary control loops were implemented to achieve equal reactive power sharing between the inverters and to restore the voltage deviations caused by the droop control. Primary droop control loops where implemented in the inverters to supply the real and reactive power. Simulation results are presented showing the feasibility of the proposed algorithm in achieving reactive power sharing between the inverters connected to the microgrid while simultaneously restoring the voltage deviations due to the droop control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.