Abstract

Samples of four types of wood and pure cellulose, both untreated and impregnated with salt (Na 2CO 3, K 2CO 3, NaCl, KC1), were pyrolysed. Two experimental systems with different geometries and secondary reaction patterns were used, viz. a McBain thermogravimetric balance and a Gray-King retort. The substrates were pyrolysed under a stream of nitrogen in the thermobalance and in some of the Gray-King runs, using a modified retort. Salt impregnation was found to modify weight loss rates and to increase the charcoal yield in the presence of an inert carrier gas in both experimental systems. Longer residence times of volatiles in the hot zone gave rise to larger charcoal yields from untreated substrates. However, long residence times of volatile matter over Na 2CO 3-impregnated cellulose were found to be detrimental to char formation. These results indicate that primary volatiles may undergo secondary reactions through competitive pathways, either polymerizing to form char or cracking to form lighter volatiles. Long residence times of light volatiles appear to enhance the latter pathway in the presence of Na 2CO 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.