Abstract
Current burn therapy is largely supportive with limited therapies to curb secondary burn progression. Adenosine 2A receptor (A2AR) agonists have anti-inflammatory effects with decreased inflammatory cell infiltrate and release of proinflammatory mediators. Using a porcine comb burn model, we examined whether A2AR agonists could mitigate burn progression. Eight full-thickness comb burns (four prongs with three spaces per comb) per pig were generated with the following specifications: temperature 115°C, 3-kg force, and 30-second application time. In a randomized fashion, animals (four per group) were then treated with A2AR agonist (ATL-1223, 3 ng/kg/min, intravenous infusion over 6 hours) or vehicle control. Necrotic interspace development was the primary outcome and additional histologic assessments were conducted. Analysis of unburned interspaces (72 per group) revealed that ATL-1223 treatment decreased the rate of necrotic interspace development over the first 4 days following injury (p < .05). Treatment significantly decreased dermal neutrophil infiltration at 48 hours following burn (14.63 ± 4.30 vs 29.71 ± 10.76 neutrophils/high-power field, p = .029). Additionally, ATL-1223 treatment was associated with fewer interspaces with evidence of microvascular thrombi through postburn day 4 (18.8% vs 56.3%, p = .002). Two weeks following insult, the depth of injury at distinct burn sites (adjacent to interspaces) was significantly reduced by ATL-1223 treatment (2.91 ± 0.47 vs 3.28 ± 0.58 mm, p = .038). This work demonstrates the ability of an A2AR agonist to mitigate burn progression through dampening local inflammatory processes. Extended dosing strategies may yield additional benefit and improve cosmetic outcome in those with severe injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of burn care & research : official publication of the American Burn Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.