Abstract

With the rapid emergence of microbial infections induced by "superbugs", public health and the global economy are threatened by the lack of effective and biocompatible antibacterial agents. Herein, we systematically design a series of secondary ammonium-based hyperbranched poly(amidoamine) (SAHBP) with different alkyl chain lengths for probing high-efficacy antibacterial agents. SAHBP modified with alkyl tails at the hyperbranched core could efficiently kill Escherichia coli and Staphylococcus aureus, two types of clinically important bacteria worldwide. The best SAHBP with 12-carbon-long alkyl tails (SAHBP-12) also showed high activity against problematic multidrug-resistant bacteria, including Pseudomonas aeruginosa and methicillin-resistant S. aureus (MRSA). Based on ζ potential, isothermal titration microcalorimetry (ITC), and membrane integrity assays, it is found that SAHBP-12 could attach to the cell membrane via electrostatic adsorption and hydrophobic interactions, following which the integrity of the bacterial cell wall and the cell membrane is disrupted, resulting in severe cell membrane damage and the leakage of cytoplasmic contents, finally causing bacterial cell death. Impressively, benefiting from excellent membrane-active property, SAHBP-12 exhibited robust therapeutic efficacy in MRSA-infected mice wounds. Moreover, SAHBP-12 also showed excellent biosafety in vitro and in vivo, which undoubtedly distinguished it as a potent weapon in combating the growing threat of problematic multidrug-resistant bacterial infections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.