Abstract

A theory of second-viscosity phenomena in dilute solutions of3He in superfluid4He is presented. The theory considers only phonon and3He quasiparticle excitations and is therefore valid at temperatures below about 0.6 K. It is shown, by an exact calculation, that within the framework of the Landau-Pomeranchuck model for the3He quasiparticle excitation energy, the four second-viscosity coefficients are related to one another and that only one of them is actually an independent kinetic coefficient. The relations between the second-viscosity coefficients are applied to analyze the expressions for the dissipative function and the first- and the second-sound attenuation coefficients. It is shown that the second-viscosity contribution to the second-sound attenuation is smaller by an order of magnitude than its contribution to the first-sound attenuation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.