Abstract

The iceformation design method generates an endwall contour, altering the secondary flows that produce elevated endwall heat transfer load and total pressure losses. Iceformation is an analog to regions of metal melting where a hot fluid alters the isothermal surface shape of a part as it is maintained by a cooling fluid. The passage flow, heat transfer and geometry evolve together under the constraints of flow and thermal boundary conditions. The iceformation concept is not media dependent and can be used in analogous flows and materials to evolve novel boundary shapes. In the past, this method has been shown to reduce aerodynamic drag and total pressure loss in flows such as diffusers and cylinder/endwall junctures. A prior paper [1] showed that the Reynolds number matched iceform geometry had a 24% lower average endwall heat transfer than the rotationally symmetric endwall geometry of the Energy Efficiency Engine (E3). Comparisons were made between three endwall geometries: the ‘iceform’, the ‘E3’ and the ‘flat’ as a limiting case of the endwall design space. This paper adds to the iceformation design record by reporting the endwall aerodynamic performances. Second vane exit flow velocities and pressures were measured using an automated 2-D traverse of a 1.2 mm diameter five-hole probe. Exit plane maps for the three endwall geometries are presented showing the details of the total pressure coefficient contours and the velocity vectors. The formation of secondary flow vortices is shown in the exit plane and this results in an impact on exit plane total pressure loss distribution, off-design over- and under-turning of the exit flow. The exit plane contours are integrated to form overall measures of the total pressure loss. Relative to the E3 endwall, the iceform endwall has a slightly higher total pressure loss attributed to higher dissipation of the secondary flow within the passage. The iceform endwall has a closer-to-design exit flow pattern than the E3 endwall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.