Abstract

Na(+) absorption and K(+) secretion in the distal segments of the nephron are modulated by the tubular flow rate. Epithelial Na(+) channels (ENaC), composed of α-, β-, and γ-subunits respond to laminar shear stress (LSS) with an increase in open probability. Higher vertebrates express a δ-ENaC subunit that is functionally related to the α-subunit, while sharing only 35% of sequence identity. We investigated the response of δβγ channels to LSS. Both the time course and magnitude of activation of δβγ channels by LSS were remarkably different from those of αβγ channels. ENaC subunits have similar topology, with an extracellular region connected by two transmembrane domains with intracellular N and C termini. To identify the specific domains that are responsible for the differences in the response to flow of αβγ and δβγ channels, we generated a series of α-δ chimeras and site-specific α-subunit mutants and examined parameters of activation by LSS. We found that specific sites in the region encompassing and just preceding the second transmembrane domain were responsible for the differences in the magnitude and time course of channel activation by LSS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.