Abstract

Cysteine dioxygenase (CDO) is a non-heme iron enzyme that catalyzes the O₂-dependent oxidation of l-cysteine (l-Cys) to produce cysteinesulfinic acid (CSA). Adjacent to the Fe site of CDO is a covalently cross-linked cysteine-tyrosine pair (C93-Y157). While several theories have been proposed for the function of the C93-Y157 pair, the role of this post-translational modification remains unclear. In this work, the steady-state kinetics and O₂/CSA coupling efficiency were measured for wild-type CDO and selected active site variants (Y157F, C93A, and H155A) to probe the influence of second-sphere enzyme-substrate interactions on catalysis. In these experiments, it was observed that both kcat and the O₂/CSA coupling efficiency were highly sensitive to the presence of the C93-Y157 cross-link and its proximity to the substrate carboxylate group. Complementary electron paramagnetic resonance (EPR) experiments were performed to obtain a more detailed understanding of the second-sphere interactions identified in O₂/CSA coupling experiments. Samples of the catalytically inactive substrate-bound Fe(III)-CDO species were treated with cyanide, resulting in a low-spin (S = ¹/₂) ternary complex. Remarkably, both the presence of the C93-Y157 pair and interactions with the Cys carboxylate group could be readily identified by perturbations to the rhombic EPR signal. Spectroscopically validated active site quantum mechanics/molecular mechanics and density functional theory computational models are provided to suggest a potential role for Y157 in the positioning of the substrate Cys in the active site and to verify the orientation of the g-tensor relative to the CDO Fe site molecular axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.