Abstract

Inspired by nature's orchestra of chemical subtleties to activate and reduce CO2 , we have developed a family of iron porphyrin derivatives in to which we have introduced urea groups functioning as multipoint hydrogen-bonding pillars on the periphery of the porphyrinic ring. This structure closely resembles the hydrogen-bond stabilization scheme of the carbon dioxide (CO2 ) adduct in the carbon monoxide dehydrogenase (CODH). We found that such changes to the second coordination sphere significantly lowered the overpotential for CO2 reduction in this family of molecular catalysts and importantly increased the CO2 binding rate while maintaining high turnover frequency (TOF) and selectivity. Entrapped water molecules within the molecular clefts were found to be the source of protons for the CO2 reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.