Abstract

The ground state structures and bond energies have been obtained for the triatomic MHX systems where M is the entire sequence of second row transition metal atoms and X is a halide. The most interesting results of this study appear when these systems are compared to the triatomic MH2 and MX2 systems. It turns out that the structure of the MHX systems are quite similar to the corresponding MH2 systems in general. Most of the MHX systems to the right thus have bent low-spin ground states, indicating large covalent contributions to the bonding. RuHX is a special case and has a high-spin linear ground state. For the systems to the left ionicity dominates the bonding. An important result, with implications for halide ligand effects on carbonyl and olefin insertion into M-H and M-R bonds, is that the M-H bonds for the systems to the right have a different character and are significantly weaker for the MHX than for the MH2 systems. A similar effect is noted when the M-Cl bond strengths of MCl2 are compared to the ones in MHCl. Both these effects can be explained by a more cationic metal with mores 0-state character when halide ligands are present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call