Abstract
Let R be a commutative ring. We investigate R-modules which can be written as finite sums of second R-submodules (we call them second representable). The class of second representable modules lies between the class of finitely generated semisimple modules and the class of representable modules; moreover, we give examples to show that these inclusions are strict even for Abelian groups. We provide sufficient conditions for an R-module M to be have a (minimal) second presentation, in particular within the class of lifting modules. Moreover, we investigate the class of (main) second attached prime ideals related to a module with such a presentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.