Abstract

In this paper, the new method called second refinement of Jacobi (SRJ) method for solving linear system of equations is proposed. The method can be used to solve ODE and PDE problems where the problems are reduced to linear system of equations with coefficient matrices which are strictly diagonally dominant (SDD) or symmetric positive definite matrices (SPD) or M-matrices. In this case, our new method minimizes the number of iterations as well as spectral radius and increases rate of convergence. Few numerical examples are considered to show the efficiency of SRJ over Jacobi (J) and refinement of Jacobi (RJ) methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.