Abstract

Total variation was recently introduced in many different magnetic resonance imaging applications. The assumption of total variation is that images consist of areas, which are piecewise constant. However, in many practical magnetic resonance imaging situations, this assumption is not valid due to the inhomogeneities of the exciting B1 field and the receive coils. This work introduces the new concept of total generalized variation for magnetic resonance imaging, a new mathematical framework, which is a generalization of the total variation theory and which eliminates these restrictions. Two important applications are considered in this article, image denoising and image reconstruction from undersampled radial data sets with multiple coils. Apart from simulations, experimental results from in vivo measurements are presented where total generalized variation yielded improved image quality over conventional total variation in all cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.