Abstract

SummaryThe three‐dimensional (3‐D) arrangement of pores in translucent alumina was investigated with a confocal scanning laser microscope (CSLM). By moving the focal plane of the CSLM down into the material, a stack of serial thin optical sections was obtained to produce a 3‐D image of the pores. Computer‐based image analysis was used to obtain the coordinates of the pore centroids. The distance distribution function G(r) and the second‐order functions K(r), L(r), H(r) and g(r) were used to analyse the spatial point pattern of the pore centroids. Estimates of the preceding functions obtained from eight stacks of sections were compared with the corresponding functions for a 3‐D stationary Poisson point process, which served as a reference model for complete spatial randomness. The analysis suggested that the pore centroids were arranged in an aggregated pattern within a range of about 10 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.