Abstract

In the framework of a real Hilbert space, we address the problem of finding the zeros of the sum of a maximally monotone operator A and a cocoercive operator B. We study the asymptotic behaviour of the trajectories generated by a second order equation with vanishing damping, attached to this problem, and governed by a time-dependent forward–backward-type operator. This is a splitting system, as it only requires forward evaluations of B and backward evaluations of A. A proper tuning of the system parameters ensures the weak convergence of the trajectories to the set of zeros of A+B\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$A + B$$\\end{document}, as well as fast convergence of the velocities towards zero. A particular case of our system allows to derive fast convergence rates for the problem of minimizing the sum of a proper, convex and lower semicontinuous function and a smooth and convex function with Lipschitz continuous gradient. We illustrate the theoretical outcomes by numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.