Abstract
This paper presents a decoupled active and reactive power control for a variable speed-constant frequency generation system based on a brushless doubly fed reluctance machine. The control design is approached using multi-input second order sliding techniques which are specially appropriate to deal with nonlinear system models in presence of external disturbances and model inaccuracies. The controller synthesized through this theoretical framework presents very good robustness features, a finite reaching time and a chattering-free behavior. The performance of the closed loop system is assessed through representative computer simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.