Abstract

Masking schemes are among the most popular countermeasures against Side-Channel Analysis (SCA) attacks. Realization of masked implementations on hardware faces several difficulties including dealing with glitches. Threshold Implementation (TI) is known as the first strategy with provable security in presence of glitches. In addition to the desired security order d, TI defines the minimum number of shares to also depend on the algebraic degree of the target function. This may lead to unaffordable implementation costs for higher orders.For example, at least five shares are required to protect the smallest nonlinear function against second-order attacks. By cuttingsuch a dependency, the successor schemes are able to achieve the same security level by just d + 1 shares, at the cost of high demand for fresh randomness, particularly at higher orders. In this work, we provide a methodology to realize the second-order glitch-extended probing-secure implementation of a group of quadratic functions with three shares and no fresh randomness. This allows us to construct second-order secure implementations of several cryptographic primitives with very limited number of fresh masks, including Keccak, SKINNY, Midori, PRESENT, and PRINCE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.