Abstract

The second-order achievable asymptotics in typical random number generation problems such as resolvability, intrinsic randomness, fixed-length source coding are considered. In these problems, several researchers have derived the first-order and the second-order achievability rates for general sources using the information spectrum methods. Although these formulas are general, their computation are quite hard. Hence, an attempt to address explicit computation problems of achievable rates is meaningful. In particular, for i.i.d. sources, the second-order achievable rates have earlier been determined simply by using the asymptotic normality. In this paper, we consider mixed sources of two i.i.d. sources. The mixed source is a typical case of nonergodic sources and whose self-information does not have the asymptotic normality. Nonetheless, we can explicitly compute the second-order achievable rates for these sources on the basis of two-peak asymptotic normality. In addition, extensions of our results to more general mixed sources, such as a mixture of countably infinite i.i.d. sources or Markovian sources, and a continuous mixture of i.i.d. sources, are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.