Abstract

Optimal second-order regularity in the space variables is established for solutions to Cauchy–Dirichlet problems for nonlinear parabolic equations and systems of p-Laplacian type, with square-integrable right-hand sides and initial data in a Sobolev space. As a consequence, generalized solutions are shown to be strong solutions. Minimal regularity on the boundary of the domain is required, though the results are new even for smooth domains. In particular, they hold in arbitrary bounded convex domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.