Abstract

In this paper we study the Poisson and heat equations on bounded and unbounded domains with smooth boundary with random Dirichlet boundary conditions. The main novelty of this work is a convenient framework for the analysis of such equations excited by the white in time and/or space noise on the boundary. Our approach allows us to show the existence and uniqueness of weak solutions in the space of distributions. Then we prove that the solutions can be identified as smooth functions inside the domain, and finally the rate of their blow up at the boundary is estimated. A large class of noises including Wiener and fractional Wiener space time white noise, homogeneous noise and Levy noise is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.