Abstract

We propose an improved proposal distribution in the Particle Metropolis-Hastings (PMH) algorithm for Bayesian parameter inference in nonlinear state space models. This proposal incorporates second-order information about the parameter posterior distribution, which can be extracted from the particle filter already used within the PMH algorithm. The added information makes the proposal scale-invariant, simpler to tune and can possibly also shorten the burn-in phase. The proposed algorithm has a computational cost which is proportional to the number of particles, i.e. the same as the original marginal PMH algorithm. Finally, we provide two numerical examples that illustrates some of the possible benefits of adding the second-order information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.