Abstract

The second-order nonlinear optical properties of three fluorescent proteins (FPs) (green, EGFP; yellow, EYFP; and red, DsRed) have been experimentally determined by frequency-resolved femtosecond hyper-Rayleigh scattering. As expected, DsRed, with its lower-energy bandgap between ground and excited state, exhibits the largest intrinsic hyperpolarizability. The anomalously low first hyperpolarizability for the yellow variant has been rationalized in terms of the centrosymmetrical arrangement between the phenolic Tyr203 (Tyr = tyrosine) residue and the chromophoric Tyr66 moiety, leaving the small imidazolinone moiety as the only effective non-centrosymmetric chromophore for second-order nonlinear effects. The experimental findings are corroborated by high-level computational results and suggest molecular engineering strategies to produce a full rainbow of FPs with enhanced nonlinear optical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.