Abstract
Asymmetric $\rm \beta$-sheet protein structures in spider silk should induce nonlinear optical interaction such as second harmonic generation (SHG) which is experimentally observed for a radial line and dragline spider silk by using an imaging femtosecond laser SHG microscope. By comparing different spider silks, we found that the SHG signal correlates with the existence of the protein $\rm \beta$-sheets. Measurements of the polarization dependence of SHG from the dragline indicated that the $\rm \beta$-sheet has a nonlinear response depending on the direction of the incident electric field. We propose a model of what orientation the $\rm \beta$-sheet takes in spider silk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.