Abstract

We investigate second-order magnetic responses of quantum magnets against ac magnetic fields. We focus on the case where the $z$ component of the spin is conserved in the unperturbed Hamiltonian and the driving field is applied in the $xy$ plane. We find that linearly polarized driving fields induce a second-harmonic response, while circularly polarized fields generate only a zero-frequency response, leading to a magnetization with a direction determined by the helicity. Employing an unbiased numerical method, we demonstrate the nonlinear magnetic effect driven by the circularly polarized field in the XXZ model and show that the magnitude of the magnetization can be predicted by the dynamical spin structure factor in the linear response regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.