Abstract

We consider a special class of Lagrangians that play a fundamental role in the theory of second order Lagrangian systems: Twist systems. This subclass of Lagrangian systems is defined via a convenient monotonicity property that such systems share. This monotonicity property (Twist property) allows a finite dimensional reduction of the variational principle for finding closed characteristics in fixed energy levels. This reduction has some similarities with the method of broken geodesics for the geodesic variational problem on Riemannian manifolds. On the other hand, the monotonicity property can be related to the existence of local Twist maps in the associated Hamiltonian flow. The finite dimensional reduction gives rise to a second order monotone recurrence relation. We study these recurrence relations to find simple closed characteristics for the Lagrangian system. More complicated closed characteristics will be dealt with in future work. Furthermore, we give conditions on the Lagrangian that guarantee the Twist property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call