Abstract
Second-order integral-form Gauss’s variational equations (GVEs) under impulsive control are derived for both nonsingular orbital elements and classical orbital elements. These equations are used to estimate the changes of the orbital elements under assigned impulsive vector. These GVEs are obtained by solving the second-order partial derivatives of orbital elements with respect to velocity vector. In addition, using analytical series approximation in the second-order GVEs, the required impulsive control is obtained for specified orbital-element variations. Based on the proposed second-order GVEs, coplanar two-impulse maneuver problems are solved to perform corrections of three and four orbital elements, respectively. Compared with the classical linear GVEs, the proposed second-order GVEs are more accurate to estimate the orbital-element variations and to solve for the required impulsive control. Several numerical examples are provided to validate the accuracy gain of the second-order GVEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.