Abstract
A second-order scheme for the Gray–Scott (GS) model used to describe the pattern formation is studied. The linear part of the GS equation for the time derivative and the viscous terms is discretized implicitly, while the other (or nonlinear) part of the GS equation explicitly. Galerkin finite element approximation methods are presented and analyzed, as well as methods for solving the resulting system of equations. The optimal L 2 -norm error estimates are derived. Numerical experiments are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.