Abstract
AbstractModeling materials with lattice‐like microstructures like open‐cell foams requires an extended continuum mechanical setting on the macroscopic scale, e. g. a micropolar or micromorphic theory. In order to avoid the formulation of constitutive equations a higher order numerical homogenization scheme (FE2) is proposed. Therefore, each integration point possesses its own microstructure which, in the present case, consists of beam‐like elements representing the cell walls. In this paper, the microstructures are discretized by continuum‐based higher order locking free finite elements with high aspect ratios, leading to a numerically efficient treatment of a local displacement‐driven boundary value problem according to the macroscopic strain and curvature. The resulting stress distributions in the microstructures are homogenized to macroscopic stresses and couple stresses. The approach is demonstrated by a numerical example. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.