Abstract
Grazing-angle scattering (GAS) is a type of Bragg scattering in slanted wide periodic gratings. It occurs when the diffracted order satisfying the Bragg condition (scattered wave) propagates at a grazing angle to the grating boundaries. Previous research has been concerned only with first-order GAS, which has been shown to be a highly unusual type of scattering characterised by a strong resonant increase of amplitudes of the scattered and incident waves in the grating. In this paper, a rigorous numerical study of second-order GAS is presented for the case of bulk TE electromagnetic waves in planar holographic gratings. A highly unusual pattern of strong resonances in the grating, which is strongly different from that for first-order GAS, is predicted, described, and discussed. Physical interpretations of the predicted results are presented. In particular, a special new type of eigenmodes in a slanted wide periodic grating with large amplitude is predicted. These eigenmodes are shown to be guided by the grating alone without any conventional guiding effect in the structure. The typical field structure in such eigenmodes is investigated and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.