Abstract

We derive an expression for the second-order gravitational self-force that acts on a self-gravitating compact object moving in a curved background spacetime. First we develop a new method of derivation and apply it to the derivation of the first-order gravitational self-force. Here we find that our result conforms with the previously derived expression. Next we generalize our method and derive a new expression for the second-order gravitational self-force. This study also has a practical motivation: The data analysis for the planned gravitational wave detector LISA requires construction of waveform templates for the expected gravitational waves. Calculation of the two leading orders of the gravitational self-force will enable one to construct highly accurate waveform templates, which are needed for the data analysis of gravitational waves that are emitted from extreme mass-ratio binaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.