Abstract
The plug-in rule is used for the classification of random observations into one of two regular one-parametric distributions. The maximum likelihood estimates of unknown parameters obtained from the stratified training sample are used. The second-order asymptotic expansion in terms of the inverses of the training sample sizes is derived for the expected regret risk. The closed-form expressions of the expansion coefficients are applicable for the performance evaluation of the proposed classification rule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.