Abstract

We present a method for calculation of the second-order exchange-dispersion energy in the framework of the symmetry-adapted perturbation theory (SAPT) for weakly interacting monomers described with multiconfigurational wave functions. The proposed formalism is based on response properties obtained from extended random phase approximation (ERPA) equations and assumes the single-exchange (S2) approximation. The approach is applicable to closed shell systems where static correlation cannot be neglected or to systems in nondegenerate excited states. We examine the new method in combination with either generalized valence bond perfect pairing (GVB) or complete active space self-consistent field (CASSCF) description of the interacting monomers. For model multireference dimers in ground states (H2···H2, Be···Be, He···H2), exchange-dispersion energies are reproduced accurately. For the interaction between the excited hydrogen molecule and the helium atom we found unacceptably large errors which is attributed to the neglect of diagonal double excitations in the employed approximation to the linear response function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call