Abstract
In this paper we introduce a differential quasi-variational inequality which consists of a second order partial differential equation involving history-dependent operators and a mixed quasi-variational–hemivariational inequality in Banach spaces. At first, by using the KKM theorem and monotonicity arguments, we show that the solution set of the mixed quasi-variational–hemivariational inequality is nonempty, bounded, closed and convex. Then, we establish the measurability and upper semicontinuity of the solution set with respect to the time variable and state variable. Finally, based on the theory of strongly continuous cosine operators and a fixed point theorem for condensing set-valued operators, we build the existence of mild solutions for the differential quasi-variational–hemivariational inequality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.