Abstract

We investigate the second-order gravitational scalar perturbations for a barotropic fluid. We derive the effective energy-momentum tensor described by the quadratic terms of the gravitational and the matter perturbations. We show that the second-order effective energy-momentum tensor is gauge dependent. We impose three gauge conditions (longitudinal, spatially-flat, and comoving gauges) for dust and radiation. The resulting energy-momentum tensor is described only by a gauge invariant variable, but the functional form depends on the gauge choice. In the matter-dominated epoch with dust-like fluid background, the second-order effective energy density and pressure of the perturbations evolve as 1/a^2 in all three gauge choices, like the curvature density of the Universe, but they do not provide the correct equation of state. The value of this parameter depends also on the gauge choice. In the radiation-dominated epoch, the perturbations in the short-wave limit behave in the same way as the radiation-like fluid in the longitudinal and the spatially-flat gauges. However, they behave in a different way in the comoving gauge. As a whole, we conclude that the second-order effective energy-momentum tensor of the scalar perturbation is strictly gauge dependent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call