Abstract

This paper proposes a scheme to determine the optical dispersion properties of a medium using multiple localized surface plasmon resonances (SPR) in a D-shaped photonic crystal fiber (PCF) whose flat surface is covered by three adjacent gold layers of different thicknesses. Using computational simulations, we show how to customize plasmon resonances at different wavelengths, thus allowing for obtaining the second-order dispersion. The central aspect of this sensing configuration is to balance miniaturization with low coupling between the different localized plasmon modes in adjacent metallic nanostructures. The determination of the optical dispersion over a large spectral range provides information on the concentration of different constituents of a medium, which is of paramount importance when monitoring media with time-varying concentrations, such as fluidic media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.