Abstract
This paper discusses the second-order local consensus problem for multi-agent systems with nonlinear dynamics over dynamically switching random directed networks. By applying the orthogonal decomposition method, the state vector of resulted error dynamical system can be decomposed as two transversal components, one of which evolves along the consensus manifold and the other evolves transversally with the consensus manifold. Several sufficient conditions for reaching almost surely second-order local consensus are derived for the cases of time-delay-free coupling and time-delay coupling, respectively. For the case of time-delay-free coupling, we find that if there exists one directed spanning tree in the network which corresponds to the fixed time-averaged topology and the switching rate of the dynamic network is not more than a critical value which is also estimated analytically, then second-order dynamical consensus can be guaranteed for the choice of suitable parameters. For the case of time-delay coupling, we not only prove that under some assumptions, the second-order consensus can be reached exponentially, but also give an analytical estimation of the upper bounds of convergence rate and the switching rate. Finally, numerical simulations are provided to illustrate the feasibility and effectiveness of the obtained theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.